

Steel corrosion protection using post-consumer polyethylene terephthalate coatings

E. Silva, F. Cotting, V. Lins

Department of Chemical Engineering, University of Minas Gerais, Belo Horizonte, Brazil M. Fedel*, F. Deflorian

Department of Industrial Engineering, University of Trento, Trento, Italy *michele.fedel@unitn.it

For further details: Coatings **2019**, 9(1), 28; https://doi.org/10.3390/coatings9010028

Poly Ethylene Terephthalate (PET)

PET is a widely used form of plastics in food packaging industry to make bottles of

- ✓ Mineral water
- ✓ Soft drink
- ✓ Ketchup
- ✓ Pickle
- ✓ etc.

PET packaging generates waste! Environmental issues related to

- ✓ Release of microplastics
- ✓ Disposal problems
- ✓ Drains blockage
- ✓ Flooding

Recycled Poly Ethylene Terephthalate (rPET)

rPET as material for polyester based coatings

AIM of the project: assess the potential of post consumer PET bottles as a material for polyester based paint for corrosion protection of steel

Recycled plastics derived coatings

rPE, rPET, rPS, rPVC coatings by thermal spray

rPET+marble dust coatings by extrusion

rPET as material for polyester based coatings

Phase 1

- Solvent dissolution
- Liquid application

- Hexafluoroisopropanol + m-Cresol
- ➤ N-Methyl-2-pyrrolidon
- > Phenol + Tetrachloroethane

Phase 2

- Shredding
- Sintering

- Shredding
- Extrusion
- Milling
- Powder coating

Shredding/milling of PET bottles

Shredding/milling PET bottles

Parameter	Size (μm)
D(4,3)	340
Dv(10)	87
Dv(50)	310
Dv(90)	635

From powder to coatings

- ✓ 260 °C for 5 minutes without pressure
- ✓ 0.5 ton applied for 2 minutes
- ✓ 5 minutes cool down
- ✓ Conditioning at room temperature for 24 hours

Upper pressing plate

Sample		$\begin{array}{ccc} \text{Glass transition} & \text{Crystallization} \\ \text{Temperature (T}_g) & \text{Temperature (T}_g) \end{array}$			Melting temperature (T_m)		Χc	Decomposition temperature (T_d)
	Onset (°C)	Midpoint (°C)	T _c (°C)	ΔH _c (Jg ⁻¹)	T _m (°C)	$\Delta H_{ m m}$ (Jg ⁻¹)	(%)	(°C)
PET bottle	73.8	78.6	195.0	35.6	233.0	35.7	25.5	454.7
PET coating	72.8	80.0	209.0	46.8	235.0	44.4	31.7	455.0

Neutral Salt Spray Test	Neutra	I Salt S	pray Test
-------------------------	--------	----------	-----------

Samples	Thickness (μm)	Adhesion (MPa)	Reference	
Polyester	≈ 290	4.8 – 6.2	[1]	
Carboxylated polyester resin	50.0 ± 5	1.7 – 3.0	[2]	
Saturated carboxylated polyester resin	90.0 ±10	4 - 6.8	[3]	
Post-consumer PET	65 ± 5	> 5	This work	

- [1] Y. Takeshita et al. Prog Org Coat., 2012, 75, 584–589
- [2] S. Mirabedini et al., Prog Org Coat., 2013, 76, 1625–1632
- [3] M. Puiga et al., Prog Org Coat., 2014, 77, 1309–1315

72 h

240 h

480 h

Comparison with literature data

Chemical nature	Thickness (μm)	Time (hours)	Rp (Ω·cm²)	REF
Polyester powder coating	90 ± 10	0 - 500	$\approx 10^8 \rightarrow 10^5$	[1]
Polyester powder coating	30 ± 2	24 - 1368	$\approx 10^{10} \rightarrow 10^7$	[2]
Polyester powder coating	45 ± 3	168 - 1200	$\approx 10^7 \rightarrow 10^4$	[3]
Polyester/epoxy powder coating	45 ± 3	168 - 1200	$\approx 10^8 \rightarrow 10^5$	[3]
Polyester resin	30 - 40	0 - 720	$\approx 10^7 \rightarrow 10^4$	[4]
Post-consumer PET	65	0 - 576	$\approx 18 \cdot 10^9 \rightarrow 8 \cdot 10^9$	This work

^[1] M. Puiga et a., Prog. Org. Coat. 2014, 77, 1309–1315

^[2] B. V. Jegdić et al., Corros. Sci. 2011, 53, 2872–2880

^[3] R. Mafi et al. Corros. Sci. 2008, 50, 3280–3286

^[4] L. Ismail et al. Pigment Resin Technol. 2016, 45, 158–163

Solvent dissolution

• Liquid application

PET based coatings from recycled bottles!

Phase 1

- Shredding
- Sintering

Corrosion protection guaranteed!

- Shredding
- Extrusion
- Milling
- Powder coating

